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It is known that different irregularities in the form of projections or depressions on 
surfaces in fluid flows may lead to significant changes in heat transfer and friction. In- 
creasing attention is being given to study of the structure of the flow on such surfaces in 
the presence of three-dimensional depressions. This stems from the need to optimize cost- 
effective methods of intensifying heat transfer. 

A survey of the literature concerning this problem shows that flow in a three-dimen- 
sional depression is of a complex and ambiguous nature and depends heavily on the parameters 
of the flow and the depression. One example is the results of studies conducted for the 
case of a cylindrical depression [i]. Here, three different flow regimes have been dis- 
covered. These regimes reflect features of the formation of unsteady three-dimensional vor- 
tices in the cavity and their interaction with the incoming flow. The data in [2-4] also 
illustrate the complex structure of flows in three-dimensional cavities. 

In the present study, we are interested mainly in flow in a depression having the form 
of spherical segments. In accordance with [5], the presence of such cavities on a surface 
leads to an increase in heat transfer. As in the case of other methods of intensifying heat 
transfer by means of surface roughness, the shear stress also increases. However, the in- 
crease in heat transfer occurs in advance of the increase in friction in this instance. 
Afanas'ev et al. [5] pointed out that a significant increase in heat flow from a wall can be 
attained only in deep cavities (such as those in which the ratio of cavity depth A to cavity 
diameter D c is equal to 0.22). A special mechanism characteristic only of such cavities is 
apparently operative in this case. The authors of [5] lean to the view that the mechanism 
here is a dynamic vortical "whirlpool-type" structure. The existence of this mechanism was 
first reported in [3]. 

It should be noted that the problem of the structure of a flow on a surface with cavi- 
ties has not yet been completely solved even for the simplest case of a single cavity with 
a sharp edge. The lack of a solution is related mainly to the paucity of empirical data 
on the problem. In this article, we describe the results of experiments conducted in in- 
dividual cavities of different depths with sharp and rounded edges. Also, in contrast to 
[6], where the focus was on the region beyond the cavity - we performed our measurements 
directly in the depression. Detailed information is presented on pressure fields and the 
resistance of the cavity, and visual observations are used as a basis for describing the 
flow structure. 

i. Experimental Equipment and Method of Measurement. These studies were conducted 
on a closed-type hydrodynamic stand [6]. The fluid in the loop was circulated by means of a 
pump. The pump supplied water to a constant-level tank which served simultaneously as a 
stabilization chamber. The water flowed directly from the tank into the working channel. 
Previously calibrated concentric orifice plates were used to measure the discharge of the 
medium through the channel. The working fluid in the loop was thermostated so that its 
temperature during the tests was about 20~ 

Figure i presents a sketch of the working section. It was an organic-glass channel 
of rectangular cross section. The height of the channel h = 15 mm, while its width H = 115 
mm. The cavities were located 600 mm from the entrance to the channel. The working section 
was designed so as to permit rotation of a cavity relative to its axis of symmetry. This in 
turn made it possible to position the pressure-tap line on the surface at any angle to the 
direction of the incoming flow. Thus, the design of the channel allowed us to make a de- 
tailed study of the pressure field in the cavity. 
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TABLE 1 

A,l~ll Ro, ~'~ D c , ~ A/D c re, 

6 
12 
23 
]2 

47 
28 
23 
28 

46 
46 
46 
46 

0,i3 
0,26 
0,5 
0,26 

0 
0 
0 
20 

The geometric parameters of the cavities are shown in Fig. i and Table i. We examined 
two types of cavities - with sharp and rounded edges. The diameter of the spherical cavities 

was kept constant (D c = 46 mm), while the circumference of the cavities with rounded edges 
was increased to D' = 64 mm. The depths of the craters were varied so that the depth- 

C. 
to-diameter ratio 5/D c = 0.13, 0.26, and 0.5. Holes 0.5 mm in diameter were drilled in each 
cavity and in several sections ahead of them to serve as pressure taps. The taps were spaced 
unevenly over the diameter, which allowed us to double the number of measured points by ro- 
tating the cavity by 180 ~ . Thus, there were twenty test points in the direction of each 
diameter. The cavity was rotated in intervals of 30 ~ . The pressure measurements were made 
using tubes secured to an inclined platform. The angle of inclination of the platform to the 
horizontal could be varied from 0 to 80 ~ Thus, the above system allowed us to determine the 
pressure gradient between a given test point and a reference point of the flow. As the ref- 
erence value, we used the static pressure on the surface at point 1 (Fig. i). This point 
was 35 mm upstream of the edge of the cavity, in the undisturbed flow. When we analyzed the 
experimental results, this value was corrected relative to the leading edge of the cavity 
on the basis of the Blasius resistance law. The mean flow velocity U in the tests and the 
Reynolds number calculated from this mean were equal to: U = 0.8 and 1.2 m/sec, Re = UDe/v = 
2.2"104-3.4.104 (D e is the effective diameter of the channel, equal to 26.5 mm), Re c = UDc/ 
v = 3.8.104-5.9.104 

Calibration measurements made by means of a laser Doppler anemometer showed that, for the 
given conditions, developed turbulent flow with the velocity profile U/U 0 = (y/8) I/7 occurs 
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ahead of the cavity. Here, the thickness of the boundary layer 6 is nearly equal to half 
the height of the channel [6] (U 0 is flow velocity at the boundary of the boundary layer). 
Flow visualization was done throughout the possible range of velocities (0 = 0-1.2 m/sec) 
with the use of an optically active liquid. Visualization was also performed by other 
methods [6], including the injection of air through a hole in a wall with a cavity. 

2. Results of Measurements and Discussion. Let us examine cavities with sharp edges. 
Figure 2 shows the distribution of the pressure coefficient over the radius of a cavity A/ 
D c = 0.26 when Re c = 5.9"104 and ~ = --60, --30, 0, 30, 60, and 90 ~ (a-f). The pressure coeffi- 
cient was calculated on the basis of the test data by means of the formula 

cp = (~i - po) I (pU212), 

where Pi is the current value of pressure; P0 is pressure at the upstream edge of the cavity; 
and p is the density of water. 

It is apparent that the entrance to the cavity is characterized by a decrease in pressure. 
The reduced-pressure region extends downstream, occupying up to 3/4 of the diameter of the 
crater. Pressure increases sharply with approach of the downstream edge, probably as a re- 
sult of reattachment of the flow separated from the upper edge. Pressure reaches high nega- 
tive values further downstream, which can be attributed to the separated character of flow 
past the angular edge. 

The maximum negative pressure and excess pressure do not exceed 0.3 of the dynamic head. 
An exception to this is a narrow region near the rear edge of the cavity, where negative pres- 
sure Cp ~ -i. 

Figure 2 compares distributions of the pressure coefficient for cavities of different 
depths in the longitudinal direction (~ = 0). The character of these distributions is quali- 
tatively similar in deep cavities (A/D c = 0.5 and 0.26 - lines 1 and 2), but an increase in 
depth leads to an increase in the maximum negative pressure. Here, the region of negative 
pressure occupies an increasingly greater area of the surface of the cavity. 

With the changeover to a shallow cavity (A/D c = 0.13 - line 3), there is a substantial 
reduction in the size of the low-pressure region. Also, the abrupt changes in pressure near 
the lower edge are replaced by smooth changes. Most of the cavity is now occupied by a high- 
pressure region, with the maximum being shifted toward the center of the crater. 
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We should note one other qualitative difference between the flows seen in deep and 
shallow cavities in the experiments. Significant pressure oscillations were seen near the 
bottom edge in the deep cavities. These oscillations were aperiodic, had a low frequency, 
and were particularly noticeable in cavities of the depth A/D c = 0.26. The pressure-oscilla- 
tion region is represented by the hatched region in Fig. 3. Such oscillations were generally 
absent in cavities of the depth A/D c = 0.13. When oscillations were present, pressure was 
determined as the mean between the extreme values. It must be noted that such an averaging 
method is approximate and that the measurements are therefore of a qualitative nature. 

Figure 3 shows isolines of the coefficient cD = const in sharp-edged cavities with A/ 
D c = 0.13, 0.26, and 0.5 (a-c). The isolines are-bunched near the lower (downstream) edge, 
which is due to an abrupt change in pressure in this region. An increase in cavity depth 
is accompanied by substantial broadening of the region of negative Cp. At A/D c = 0.26, the 
pattern of isolines conforms qualitatively to the results obtained in [i] for A/D c = 0.2. 
The flow in a cylindrical depression was studied in [i]. It is interesting to see that, with 
A/D c = 0.5, the distribution of cp in a cylindrical cavity [i] is asymmetric, while no such 
asymmetry was seen in our experiments. This difference can be attributed to two factors: 
the shape of the cavities; the method of averaging the pressure values. The second factor is 
probably negligible in the given case, however. It would be especially important in the 
presence of pronounced aperiodic oscillations, i.e., with A/D c = 0.26. Still, as indicated 
above, the difference between our results and the data in [i] is relatively small even for 
this case. 

Let us now discuss the flow seen in cavities with rounded edges. Figure 4 shows the 
distribution of the pressure coefficient over the diameter of cavities with ~ = -60, -30, 
0, 30, 60, and 90 ~ (a-f). The left-most and right-most sampling points (r' = -i and I) 
correspond to points where the cavity meets the rest of the surface in the flow. 

The data in Fig. 4 was compared with the information in Fig. 2, which shows results of 
similar measurements for a cavity with a sharp edge. Despite the fact that, in accordance 
with the chosen terminology, this cavity was deep (A/D c = 0.26), the character of distribution 
of cp in the cavity with the rounded edges was very similar to the distribution for a shallow 
cavity. The only difference was that there was almost no region of negative pressure-coef- 
ficient values in the former case. The only exception was a small region immediately after 
the initial section of the cavity, where local flow separation occurred. Also, the maximum 
value of cp was somewhat higher in the rounded cavity than in the sharp-edged cavity. 

Figure 3d shows the behavior of isolines of Cp for rounded cavities. It is evident 
that the largest gradients occur at the leading and trailing edges, where the lines are 
very closely spaced. A plateau of smoothly varying excess pressure exists over a large part 
of the cavity surface. If we make a comparison with the lines cp = const for a sharp-edged 
cavity of the same relative depth (A/D c = 0.26, Fig. 3b) we see a substantial difference in 
the distributions of the lines. The aperiodic large-scale flow oscillations seen in the 
sharp-edged cavities are not observed in the smooth cavities. 

In the next stage of the experiments, we determined the integral pressure losses in each 
cavity. To do this, the local pressure distributions were integrated over the entire surface 
of a spherical segment. We then found the projection of this value for specified directions. 
For example, for the direction of the x axis in the segment, the pressure integral has the 
form 

DC/2~ 

COS ~. dr d~. ( 2 . 1 )  
C 0 0 r ~ 

In determining the pressure loss in the cavity with rounded edges, integral (2.1) was found 
as the sum of two parts: one part was obtained by integration over the surface of the spheri- 
cal segment, while the second part was obtained by integration over the surface of a body 
joining the sphere and a plane surface. 

Similar to (2.1), total pressure in the vertical direction can be found by numerical 
integration of the relation 

Dc/2 2~ 

ACwy = 4--~ ~ ~ c~ir dr da. 
z~D ~ 

C 0 0 
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No particular difficulties are encountered in determining the pressure losses in a 
spherical cavity for any direction in the xz plane, which coincides with the surface in the 
flow. In our case, Acwx will characterize the resistance of the cavity due to pressure 
forces, without allowance for the effect of surface friction. The pressure forces in cavities 
generally turn out to be greater than surface friction, so that ACwx can be regarded as the 
fluid resistance of cavities in a first approximation. 

Table 2 shows integral pressure losses in a cavity Ac w in three mutually orthogonal direc- 
tions (x, y, z). For convenience in comparing these results with the data of other authors, 
the values of Ac w are referred to the maximum velocity U 0 = 1.14U rather than mean velocity 
U (as in the expression for cp). It is evident from Table 2 that an increase in the depth 
of a cavity is accompanied by an increase in its resistance in the flow direction ACwx. An 
increase in the Reynolds number has the opposite effect in this instance. The reason for the 
latter might be the fact that a change from laminar to turbulent flow took place at Re c = 
3.8.10 4 . It must also be noted that, in accordance with the tabular data, smoothing of the 
edges of the cavity significantly (by a factor of 2-2.5) lowers its resistance. This impor- 
tant fact must be considered in the design of heat exchangers. 

It is interesting to examine the behavior of the pressure coefficient in the direction 
perpendicular to the surface. Except for the deepest cavity (A/D c = 0.5), this coefficient 
Ac wy is negative. Thus, the incoming flow will have an effect on the total excess pressure 
on the surface. The highest pressure on the surface in the Vertical direction is seen in the 
case of rounded cavities. Here, the coefficient ACwy is 4-5 times greater than for geometri- 
cally similar cavities with sharp edges. The overall coefficient ACwy > 0 for a 
hemispherical cavity (A/D c = 0.5), with a field of negative pressure being formed 
inside this depression. Such a cavity exerts a suction effect of fairly high 
intensity (ACwy ~ 0.2), which should lead to the generation of powerful circulatory 
flows inside depression. It is also evident from the data in Table 2 that the 
pressure coefficient in the meridional direction ACwz is more than an order lower than the 
corresponding values of ACwx and ACwy. This shows that the pressure distribution can be con- 
sidered symmetrical relative to the lengthwise direction, despite the deviations from cp 
isoline symmetry seen in Fig. 3. 
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TABLE 2 

A/5 ~/O c Re c �9 i0 -4 ,Scv: x. 10= acwy. t02 hCwz. 103 i Remarks 

Cavity with sharp 0,8 0,13 3,8 1,3 --1,07 0,2 edge 

0,8 0,13 5,9 1,26 --i,24 0,6 I Same 

1,6 0,26 3,8 4,05 --0,96 2,82 ] )> 

1,6 0,26 5,9 3,52 --2,42 4,i3 I 

3,1 0,5 3,8 5,55 26,4 1194 ] 

3,i 10,5 5,9 t 3,94 1 i9,2 --0,78 i ' 

3,8 2,4 --7,4 i,6 ] 0,26 

i,6 I 0,26 5,9 i ,79 --t0,4 

1,9 Cavity with rounded 
edge 

--0,85 t Same 

The symmetrical character of the distribution of integral values of pressure can be 
discerned from Fig. 5, which shows the change in the integral pressure coefficient &c w in 
relation to the angle between the longitudinal direction and the given direction when Re c = 
5.9.104 . In the determination of ACwa, the pressure measurements made at different points 
were first projected onto the xz plane. We then took their projections in a specified di- 
rection and numerically integrated these values. The value a = 0 in Fig. 5 corresponds to 
resistance in the longitudinal direction 5Cwx , while ~ = • corresponds to the same in the 
meridional direction 5Cwz. Points 1-4 correspond to 5/D c = 0.13, 0.26, and 0.5 with sharp 
edges and A/D c = 0.26 with smooth edges. The empirical points for all of the cavities are 
located symmetrically relative to the angle a = 0. Analysis of the experimental data showed 
that it is described well by the cosine distribution law 

Ac~ = Ac=cos~. ( 2 . 2 )  

The value of Ac w can be used to evaluate the friction coefficient at the boundary be- 
tween the external flow and the cavity in the xz plane at y = 0. In fact, if we ignore the 
viscous friction of the flow on the surface, the equation of momentum conservation in the 
cavity leads to the relation [7] 

Ac~  = 2 ( ~ x z ) y = o / ~ U ~  = (el)y= o. 

It is important that the shear stress on the boundary of the cavity (Cf)y= o also obeys cosine 
relation (2.2). 

Figure 6 shows experimental data on the pressure loss coefficient in the longitudinal 
direction. The data is shown in the form of the dependence of ACwx on the parameter A/D c and 
is compared with the results from [i] (line i). The quantity ACwx was similarly determined 
in [i], but for cylindrical depressions. Lines 2 represent the well-known Wieghardt relations 
for a cylindrical cavity [2]. In considering the latter, it must be kept in mind that they 
were obtained by a method differing fundamentally from our method and the method employed in 
[I] (by means of aerodynamic weighting factors accounting for the additional contribution of 
shear stresses to ACwx). As a result, the above comparison can only be qualitative. Another 
difficulty encountered in comparing the results in Fig. 6 was the difference in the test 
conditions in regard to both Re and A/6. Thus, Fig. 6 shows the Wieghardt curves for the 
interval A/6 = 0.6-3.1 within which we obtained our data (see Table 2). The dark points in 
Fig. 6 correspond to cavities with sharp edges, while the clear points show the results for 
the smooth-edged cavities. Points 3 and 4 were obtained with Re c = 4.10 4 , 5.9.10 4 . 

It is apparent that in both cylindrical and spherical cavities, 5Cwx depends appreciably 
on the parameter A/D c. Here, ACwx changes from a minimum at &/D c ~ 0.2 to a maximum at 5/D c = 
0.5. The authors of [I] followed the change in flow structure which accompanied this change 
in value. A sharp increase in 5Cwx was found to have been accompanied by or induced by a 
change to a flow regime that was termed the transitional regime. This regime is character- 
ized by the presence of pressure fluctuations and a flow structure that is asymmetric relative 
to the incoming flow. This regime is unstable and can be altered through the application of 
a force on the flow. The possible existence of such a regime in cavities was discussed in 
[8, 9] with specific reference to the case when a whirlpool structure is formed above the 
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cavity. A transitional regime evidently also arose in our experiments at A/D c ~ 0.26 and was 
manifest in aperiodic pressure fluctuations and an increase in the resistance of the cavity. 
It must also be noted that the increase in cavity resistance occurred at A/D c = 0.26, which 
is lower than the corresponding value for cylindrical cavities. 

We emphasize once again that the resistance of a cavity with smooth edges turns out to 
be roughly half as great as that of a sharp-edged cavity. This can be attributed to the fact 
that the law governing the rounding of the edges has a significant effect on the change to 
the transitional flow regime in the cavity. Accordingly, the maximum coefficient ACwx will 
correspond to different A/D c than in sharp-edged cavities. 

Flow visualization confirmed that the transitional regime did develop in the deep cavi- 
ties. The visualization results can be summarized as follows. 

At A/D c = 0.26 and a low flow velocity (U < 0.2 m/sec) - which, as shown by the velocity- 
distribution and pulsation measurements made with the laser Doppler anemometer, correspond 
to laminar or transitional (to turbulent) flow in the channel - a structure consisting of a 
pair of symmetrically positioned vortices is formed inside the cavity. The boundary layer is 
separated from the top edge of the cavity. The region in which the boundary layer is re- 
attached and becomes diffuse (with part of the flow moving into the cavity and part moving 
outside it) is of an unsteady, pulsating nature. One consequence of this is that the above- 
mentioned vortex pair is itself unsteady (oscillates). Also, the flow separated from the top 
edge of the cavity periodically reverses. Visualization of the flow beyond the cavity re- 
vealed a structure outwardly similar to a K~rm~n vortex street, representing an oscillatory 
flow regime. 

As in the case of a true K~rm~n vortex street, there was a time interval (shift) between 
the two vortices corresponding to the right and left parts of the cavity. An increase in 
velocity was accompanied by an increase in the rate of reversal of the flow that had separated 
from the top edge of the cavity and a decrease in the time interval between the vortices in 
the Kgrm~n vortex street. The flow regime in the channel was turbulent and the vortex struc- 
ture inside the cavity was asymmetric at the flow velocity U = 0.8 m/sec for which we measured 
pressure. When a visualization was performed by injecting air through a hole in the wall 
containing the cavity, we observed transverse (in the z direction) oscillations of the air 
stream (Fig. 7, which shows the direction 2 of propagation of the jet 1 at different moments 
of time). These oscillations had a low-frequency and a high-frequency (jet-vibrating) com- 
ponent. The high-frequency oscillations wereof low amplitude (~D c) and were probably con- 
nected with the oscillatory process of K~rm~n vortex street formation. The low-frequency 
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oscillations can be attributed to the onset of the transitional regime in the cavity. These 
oscillations were aperiodic, had a large amplitude (~Dc) , and resulted in a sharp change in 
the direction of propagation of the jet (roughly from 45 to -45~ The characteristic time 
of these oscillations was about 20 sec. 

Similar oscillations of the air jet were also seen in the deeper cavity with A/D c = 0.5. 
However, these fluctuations were of higher frequency and lower amplitude. Almost no vibra- 
tions of the jet were seen in the cavity with A/D c = 0.13 or in the cavity with the rounded 
edge (A/D c = 0.26). 

In conclusion, we must note the following. All of the data obtained to this point 
indicate that the flow structures in two- and three-dimensional cavities are similar. In 
connection with this, we would like to relate our data and data in [8, 9] on unstable flow 
in a cavity to several empirical findings on two-dimensional cavities. Here, two interpre- 
tations are possible. The first follows from the results reported in [i0], where - as in 
our study - it was found that there are two different regimes of unstable flow in a cavity. 
One of these regimes is a high-frequency regime and is connected with the onset of oscilla- 
tions in a boundary layer separated from the top edge of the cavity. The other, low-frequency 
regime is due to the instability of the vortex structure of the cavity. 

The second interpretation follows from the fact that, according to [ii] and other in- 
vestigations, several different oscillatory regimes or modes are realized in the separated 
boundary layer. The regime or mode that exists depends on the parameters of the cavity and 
the flow. The change from one mode to another is accompanied by a high degree of flow in- 
stability and leads to reconfiguration of the vortex structure in the cavity. This restruc- 
turing occurs in both the longitudinal and the transverse directions. As is evident from 
the descriptions given, there are many common features to the transitional regime discussed 
in [I0], the regime of vortex-structure instability reported in [9], and the regime - seen 
in [i, 3] and in our studies -- which leads to intensive pressure oscillations. 

The authors thank V. N. Terekhov for helping to perform the experiments. 
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